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Abstract— Large-scale swarm robotic systems consisting of
numerous cooperative agents show considerable promise for
performing autonomous tasks across various sectors. Nonethe-
less, traditional motion planning approaches often face a
trade-off between scalability and solution quality due to the
exponential growth of the joint state space of robots. In
response, this work proposes SwarmPRM, a hierarchical,
scalable, computationally efficient, and risk-aware sampling-
based motion planning approach for large-scale swarm robots.
SwarmPRM utilizes a Gaussian Mixture Model (GMM) to
represent the swarm’s macroscopic state and constructs a
Probabilistic Roadmap in Gaussian space, referred to as the
Gaussian roadmap, to generate a transport trajectory of GMM.
This trajectory is then followed by each robot at the microscopic
stage. To enhance trajectory safety, SwarmPRM incorporates
the conditional value-at-risk (CVaR) in the collision check-
ing process to impart the property of risk awareness to
the constructed Gaussian roadmap. SwarmPRM then crafts
a linear programming formulation to compute the optimal
GMM transport trajectory within this roadmap. Extensive
simulations demonstrate that SwarmPRM outperforms state-
of-the-art methods in computational efficiency, scalability, and
trajectory quality while offering the capability to adjust the
risk tolerance of generated trajectories.

I. INTRODUCTION

Large-scale swarm robotic systems comprised of numer-
ous autonomous robots hold great promise for executing
diverse tasks such as surveillance [1], environmental ex-
ploration [2], and search and rescue [3]. In recent years,
there has been a surge in interest towards developing motion
planning techniques for large-scale swarm robots [4-6].

Sampling-based algorithms [7] as a prominent motion
planning technique have demonstrated significant potential
for application in swarm robotic systems. For example, Cap
et al. [8] adapted RRT* to solve the multi-agent motion
planning problem in a centralized manner by treating the
union of all agents as a single system. However, this ap-
proach is computationally intractable due to the exponential
growth of the search space as the swarm size increases.
Honig et al. [4] enhanced scalability by first generating
a sparse probabilistic roadmap (PRM) and then utilizing
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Fig. 1: Illustration of the hierarchical motion planning for a
large-scale robot swarm. (a) The macroscopic planning of the
swarm robots. In the two-dimensional cluttered environment WV
with four obstacles 01, Oz, O3z, O4, the swarm’s macroscopic state,
represented as a PDF, is depicted as a blue cloud, and individual
robots at time T are represented by black dots. The macroscopic
trajectory, as represented by the black dotted lines and colored
arrows, guides the swarm from initial area at time 7j to the target
area at time 7, passing through two intermediate macroscopic
states at time 73 and 7%, respectively. The trajectory may involve
"splitting" or "merging" maneuvers, depicted by the orange and red
dotted lines and arrows, respectively. (b) The microscopic state of
robots in the swarm. The robots track the macroscopic state while
avoiding collision with obstacles.

multi-agent path finding algorithms for path planning subject
to inter-robot constraints in the space discretized by the
roadmap. Yet, the sparsity of the roadmap compromises the
trajectory cost in favor of computational efficiency. Shome
et al. [9] proposed dRRT*, an informed, asymptotically opti-
mal sampling-based motion planning algorithm that includes
constructing PRMs for individual robots and building a
search tree without requiring an explicit representation of the
joint motion graph. Sampling-based approaches have proven
effective for trajectory planning, particularly in cluttered
environments. Nevertheless, these methods inevitably face
a trade-off between scalability and the cost of the trajectory
due to the exponential growth of the joint state space of all
robots. Besides, as the swarm size increases, ensuring inter-
robot constraint satisfaction becomes increasingly difficult.
Recently, the hierarchical strategy has emerged as a
promising approach for the motion planning of large-scale
swarm robots. The hierarchical strategy consists of macro-



scopic and microscopic planning stages. At the macroscopic
stage, the robot swarm is treated as an entirety, and the
macroscopic swarm state is usually represented as a prob-
ability density function (PDF). At the microscopic stage,
robots autonomously match the PDF by coordinating the
distribution of their positions. The main benefit of employing
a hierarchical strategy is that the computational complexity
of macroscopic planning becomes independent of the size
of the swarm. This is made possible by abstracting the
detailed behaviors and positions of individual agents into a
collective "swarm state", allowing for scalable and efficient
management regardless of the swarm’s size. Adopting this
strategy, Rudd et al. [10] employed parametrized PDFs to
represent the macroscopic states of the swarm and cal-
culated the optimal robot distribution by solving a non-
convex, constrained trajectory optimization problem. The
computational burden is very high, though, hindering its real-
time implementation in practice. Zhu et al. [5] proposed an
ADOC approach that modeled the macroscopic state of the
swarm as a Gaussian mixture model (GMM), and utilized
the optimal mass transport (OMT) theory to plan the PDF
trajectory. ADOC shows desirable real-time performance.
However, using a predetermined set of Gaussian collocation
points for GMM trajectory generation limits the flexibility
and adaptability to complex spatial challenges in trajectory
planning, thus often yielding suboptimal, costly trajectories
in cluttered environments.

In this work, we combine the advantages of both sampling-
based approaches and hierarchical strategy to propose a
sampling-based, hierarchical motion planning approach for
robotic swarms, namely SwarmPRM. At the macroscopic
stage, the collective swarm is presented by a GMM, and a
PRM is constructed to generate GMM trajectories. At the
microscopic stage, individual robots track the PDF via a
computationally efficient local tracking control law.

A significant challenge in SwarmPRM involves collision
checking during the sampling process, as the samples are
PDFs rather than deterministic states typical of traditional
sampling-based methods. Consequently, there arises a neces-
sity for a risk measure to assess the likelihood of collisions
between a PDF sample and obstalces. To overcome this diffi-
culty, we propose to use the conditional value-at-risk (CVaR)
as the risk measure for collision checking in the sampling
process. CVaR is a coherent measure [11] that quantifies
the potential losses beyond a certain confidence level. Since
CVaR can take into account the tail distribution through
conditional expectation, which enables the discerning of rare
events, it recently gained significant attention in the robotics
community [12, 13].

In general, SwarmPRM is a novel sampling-based, hierar-
chical approach for the motion planning of large-scale swarm
robotic systems, characterized by scalability, computational
efficiency, risk awareness, and trajectory flexibility. The main
contributions of this work are threefold:

1) We propose to sample in Gaussian parametric space to

construct a Gaussian PRM where each node represents
a distinct Gaussian distribution. The cost and geodesic

path between nodes are determined under the Wasser-
stein metric.

2) We develop a systematic collision checking approach
using CVaR as the risk measure when constructing the
Gaussian PRM. Specifically, we compute the distribu-
tion of the signed distance function (SDF) between the
samples and the obstacles, and constrain the CVaR of
the SDF within the safety threshold.

3) We design a linear programming formulation to com-
pute the optimal macroscopic GMM trajectory on the
constructed roadmap. Through extensive simulations,
we demonstrate the superiority of SwarmPRM over
several state-of-the-art benchmark methods in aspects
of computational efficiency, scalability, and trajectory
quality. Furthermore, SwarmPRM exhibits risk aware-
ness where the risk tolerance level can be easily ad-
justed, offering great flexibility in designing swarm
behaviors, especially in cluttered environments.

II. PROBLEM FORMULATION AND BACKGROUND
A. Problem Formulation

Consider a swarm robotic system represented by the set
R = {1,2,---,N}, where N denotes the number of ho-
mogeneous robots within a large two-dimensional cluttered
environment YW < R? containing Nps convex obstacles'
O = {01,-" ’ONObs}’ where Ol C W,i = 1,"' 7]\/vobs.
The objective is to devise trajectories for all robots, directing
them from initial positions to target areas. The obstacles
are static and known a priori, and under the assumptions of
connectivity and information sharing, the states of the robots
are fully observable. The set of all robots’ initial positions
is denoted as Q = {qq, - ,qy}, where g; e W,ie R.

We adopt a hierarchical motion planning strategy for
the swarm robots (Fig. 1). At the macroscopic stage, we
represent the entirety of the swarm as a PDF x(t) € P(W)
which is time-varying and constitutes a PDF trajectory with
respect to time ¢. Here P(W) represents the space of PDFs
with support W. We model the initial and target distribution
of swarm robots as two PDFs pr,, PTy» and aim at devising
a swarm’s macrsocopic state trajectory transitioning from
pr, to pr, while simultaneously avoiding obstacles. At the
microscopic stage, each robot autonomously tracks the PDF
x(t) while ensuring collision avoidance with obstacles and
other robots.

At the macroscopic stage, the optimal time-varying PDF
X (t) can be calculated by solving the following optimization
problem

min  J(x(t)) (1)
s.t.  pr, = x(To), (1a)
pr; = x(Ty), (1b)

R@(X(t)) < (5, Vt e [To, Tf], (10)

'Note that our motion planning method is readily adaptable to envi-
ronments containing non-convex obstacles via decomposing non-convex
obstacles into the union of convex ones.



where (1a), (1b) denote the swarm’s initial and target macro-
scopic PDF state constraints, respectively, and (1c) represents
the collision avoidance constraint with R and § denoting
the risk measure and safe region threshold, respectively. The
objective is to minimize the swarm’s transport cost .J, while
adhering to the aforementioned constraints.

B. Sampling-Based Motion Planning Algorithms

Sampling-based Algorithms (SBAs) have been a prevalent
strategy for motion planning in robotics [7, 14, 15]. SBAs are
characterized by a triplet (Xfyee, Tinit, Tgoal), Where Xfpee,
Tinit, and X404, represent the collision-free configuration
space, the initial configuration, and the goal configuration,
respectively. The objective is to find a collision-free tra-
jectory 7 : [0,1] — Xppee, satisfying 7(0) = @i and
T(1) = @ g40a1. SBAs operate by sampling the configuration
space and constructing a tree or graph, which expresses
the connectivity and the feasible paths within the space. In
this work, we specifically consider PRM [7]. Initially, new
samples are drawn from AX’f,... to create graph nodes in the
roadmap. Subsequently, each node undergoes a query process
to identify neighboring nodes to which the transition is
collision-free with respect to obstacles, and edges connecting
the respective nodes are added to the roadmap. Finally, a
graph search is performed to find a shortest path connecting
Tinit and T 4041 in the constructed roadmap.

C. Optimal Transport Theory and Wasserstein Metric

The OMT theory [16] tackles the task of transporting
masses from an initial distribution to a terminal one while
maintaining mass continuity and minimizing associated
costs. The Wasserstein distance W, is an important metric
representing the minimal transport cost within the space
of PDFs. The Wasserstein metric between two Gaussian
distributions g1 = N (p1,%1), 92 = N(p2,X2) is

Wa(g1,92) ={|u1 — pao?

1 1 2
+ tr [21 + X9 —2(21222212)5] } y

where | -|| denotes the Euclidean distance and ¢r(-) represents
the trace of a matrix. The geodesic path §1 2(t),t € [0, 1] be-
tween g1, g2 1s Gaussian with following mean and covariance
[16]

p(t) = (1—t)py +tpo, 3)
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There is no analytic expression for the Wasserstein metric
between two GMMs. In response, a metric in the space of
all GMMs, G M, defined as

Ni N2 12 z
D(er,e2) ={ _mi [Walghad)| =i}
(01,00) {nenr{g?,wz);; 5(91,93)| (i, 5)

&)
has been proposed in [16] as an efficient approxima-
tion to the Wasserstein metric for two arbitrary GMMs

or = N1 wigh o2 =
[wi,,wi'] and wy = [w],---,wh?] are associated
weight vectors satisfying Zf\;ll wi = 1,2?’:21 w) =1, and
IT(w1,w2) denotes the space of joint probability distributions
between w; and wsy. The geodesic path connecting o; and

02 is given by
éLQ(t) = 2’”*(27])§]1,ﬂ2(t>7 te [07 1]7 (6)
.3

N
o1 wWags € GM, where wy =

where 7%(i, j) denotes the optimal joint distribution, and
ngQ(t) represents the geodesic path between Gaussian distri-
butions g¢ and g3, which can be calculated based on Egs. (3)
and (4).

D. Conditional Value-at-Risk

Given a PDF and a risk tolerance level «, the CVaR
computes the conditional expectation of the loss within the
a worst-case quantile [12]. The CVaR of a Gaussian random
variable v ~ N (u, 0?) is

P21 (1 - o))

CVaR,(v) = p + ————0, (7
(6%

where ¢ and ® are the PDF and cumulative density function
(CDF) of the standard normal distribution, respectively.

III. CONSTRUCTING RISK-AWARE GAUSSIAN ROADMAP

The swarm’s macroscopic state is represented by a time-
varying PDF x(t),t € [Ty, Ty]. Because of the universal
approximation property of GMMs [17], without loss of
generality, we approximate x(¢) as a GMM at each time
instance. The swarm’s initial and target macroscopic states
are modeled as two GMMs o7, 0Ty and the optimal PDF
transport trajectory is devised in GMM space GM, i.e.,
Vt e [Ty, Ty], x(t) € GM, x(To) = o1y, x(Tf) = or,. The
distance metric Eq. (5) and the corresponding geodesic path
Eq. (6) in GMM space suggest that the optimal transport be-
tween two GMMs can be achieved through transport weight
allocation between their respective Gaussian components.
Furthermore, the geodesic path Eq. (3) and Eq. (4) between
two Gaussian distributions implies that each intermediate
state along the optimal transport trajectory between two
Gaussian distributions retains a Gaussian distribution. There-
fore, the optimal GMM trajectory x(¢) can be achieved
through a set of Gaussian distribution trajectories originating
from the Gaussian components of g7, and advancing towards
those of or,.

To compute such trajectories, we propose to construct
a risk-aware Gaussian roadmap at the macroscopic plan-
ning stage. In contrast to conventional roadmap construction
methods [7], our approach samples each node as a Gaussian
distribution, and determines the distance and geodesic path
between each pair of nodes based on the Wasserstein metric.
Furthermore, the risk measure CVaR is utilized to perform
collision checking for each Gaussian node. This Gaussian
roadmap is then used to generate GMM trajectory x(t)
between o7, and 0Ty » which will be detailed in Sec. IV.



A. Roadmap Construction

Denote G as the space of two-dimensional Gaussian distri-
butions, where each element is represented as g = N (u, ),
with the mean p € VW, and covariance matrix

2
Y= [ 01 p01202] ) (8)

pPO102 g5

Here 0,03, p denote two variances and the correlation
coefficient, respectively. The distance in G is defined based
on the Wasserstein metric Wy : G x G — R, and the
cost function is the path length in this Gaussian space.
The roadmap construction approach (Alg. 1) is outlined in
the ROADMAPCONSTRUCTION function, which takes the
number of samples n, the connection radius r, the set of
obstacles O, and a set D representing the set of initial and
target Gaussian distributions as inputs. Initially, a node set V'
is constructed through the combination of the set D as well
as n € N nodes generated by the function SAMPLEFREE
(Line 1). Subsequently, for each node g € V, the function
NEIGHBOUR calculates the set V., containing all nodes
located in the neighbourhood of node g (Line 3). For each
node ¢’ € Vjear, the edges (g,¢’') and (¢’, g) are added to
the edge set E, if the geodesic path §(t) defined based on the
Wasserstein metric is a subset of the obstacle-free region in
G, which is checked by the function COLLISIONFREE (Line
4-7). Finally, a graph G = (V, E) is constructed (Line 11).
The functions SAMPLEFREE and NEIGHBOUR are detailed
as follows, and the functions INFREE and COLLISIONFREE
will be detailed in Sec. III-B.

1) SAMPLEFREE: The function SAMPLEFREE returns a
set of n € N nodes in free space. We utilize five-dimensional
parameter vectors v = [w,y,ol,@,p] e R® to represent
Gaussian distributions in G, with mean [z, y| and covariance
matrix in the form of (8). Whenever the number of nodes in
the set V' is less than n, denoted as |V| < n, a node g is
generated through sampling a parameter vector v (Line 13-
14). Various sampling strategies, including random sampling
and deterministic sampling methods [15], can be utilized to
sample v. If the Gaussian distribution g is in free space, as
verified by the function INFREE, then it is added to the set
V (Line 15-17).

2) NEIGHBOUR: The function NEIGHBOUR takes the
node g, connection radius 7, and the node set V' as inputs,
and returns the set V.- < V' containing all nodes located
in the neighbourhood of node g. For each node ¢’ in the set
V', if W5(g,g’) is no more than the connection radius r,
then ¢’ is added to the set V.o, (Line 22-24).

B. Collision Checking Based on CVaR

We utilize the risk measure CVaR to perform collision
checking between each Gaussian node and the obstacles O
during the roadmap construction procedure. We first derive
via the linearization technique that PDF of the SDF between
a Gaussian node and an obstacle can be approximated as
a Gaussian distribution. Subsequently, we utilize CVaR to
constrain the conditional expectation of the SDF within the

Algorithm 1: Gaussian Roadmap Construction

Procedure ROADMAPCONSTRUCTION(n,r, O, D)
1: V.« D U SAMPLEFREE(n, O); E «— &

2: for ge V do

3. Viear < NEIGHBOUR(V\{g},g,7)

4:  for ¢’ € V,yeqr do

5 Generate geodesic path g(t) from g and ¢’ using
(3) and (4)

6: if COLLISIONFREE(§(t), O) then

7: E—Eu{(g,9)}vild,9)}

8: end if

9:  end for

10: end for

11: return G = (V, E)

Procedure SAMPLEFREE(n, O)

122V — &

13: while |V| < n do

14: Generate Gaussian distribution g € G through
sampling parameter vector v

15:  if INFREE(g, ©) then

16: V—Vu{g}

17.  end if

18: end while

19: return V

Procedure NEIGHBOUR(V', g,7)
20: Vnear <~ @

21: for ¢’ e V' do

22:  if Wa(g,g’) < r then

23: Vn.ear <« Vnear Y {g/}
24:  end if
25: end for

26: return V...

Procedure INFREE(g, O)

27: for all O € O do

28:  Compute the negation of SDF using (11)
29:  if (12) not holds then

30: return false
31:  end if
32: end for

33: return true

o worst-case quantile to reside within the safe region, where
« denotes the risk tolerance level.

1) SDF Linearization: The SDF quantifies the distance
between two sets A and B, defined as

inf{|t], |t +AnB#@hLifANB = &,

—inf{|t|z | t+ AnB=J},ifAn B # &,
)
For a deterministic point p and a convex obstacle O, we can
obtain the signed distance de R, the closest points from
the obstacle p, € O, and the contact normal n(p,0) =
sgn(d)(pp —p)/|pe —p| utilizing Gilbert—Johnson—Keerthi
(GJK) algorithm for non-intersecting sets [18] and Expand-
ing Polytope Algorithm (EPA) for overlapping shapes [19].
For a stochastic point p ~ A(p,X) and a deterministic
obstacle O, the SDF can be linearized as

5(p,0) ~ s(pn, 0) + Vs(p, O) |p=p - (P — 1),

which approximates the obstacle as a half plane with outer

s(A,B) = {

(10)
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Fig. 2: SwarmPRM motion planning process at the macroscopic stage. (a) Projection of the risk-aware Gaussian roadmap onto the
workspace W, with the obstacles O1, Oz, O3, O4 colored in light orange. Each black dot represents a node in the Gaussian roadmap,
which represents a two-dimensional Gaussian distribution. The black polyline depicts the shortest path between Gaussian distributions 97,
and g7 on the roadmap. (b) Each segment of the polyline represents an edge in the Gaussian roadmap illustrating the shortest geodesic
path between two nodes defined based on the Wasserstein metric. The CVaR associated with each node in the Gaussian roadmap is required
to be below the safe region threshold 4. (c) Through graph search on the Gaussian roadmap, the lowest transport cost £(g7,, g{r ) between

each pair of Gaussian distributions (gTD , ng) can be computed. The optimal GMM trajectory on the Gaussian roadmap is then calculated

by solving a linear programming problem.

normal vector —n (g, O) so that Vs(p, O) |p—p, = n(u, O).
It is obvious that the random variable s(p, O) satisfies a
Gaussian distribution with mean s(p,©) and covariance
n”Yn after linearization [13,20], where n = n(u, O).

2) CVaR Collision Checking for Swarm Robots: Given a
team of robots whose macroscopic state is represented by
a random variable satisfying a Gaussian distribution p ~
N(p,X) and an obstacle O, the probabilistic distribution
of the SDF s(p,O) can be approximated as a Gaussian
distribution. Define 1 as the negation of the SDF,

n=—s(p,0)~n ~N(—s(p,0),n"En), (11

where a greater value of 7 indicates a smaller SDF value
between the robot team and the obstacle O, and 7 is
approximated by the random variable 7’ through (10). We
subsequently compute the CVaR of 7/, and the collision
avoidance requirement can be written as

CVaR, (1, 0) ~ CVaR, (1, 0) < 6, (12)

where o denotes the risk tolerance level, and § < 0 repre-
sents the safe region threshold, constraining the conditional
expectation of opposite SDF within the o worst-case quantile
to be no more than J.

During the construction of the Gaussian roadmap, the
function INFREE serves to check whether the nodes are
collision-free with respect to obstacles, i.e., whether (12)
holds for each environmental obstacle O € O, as presented
in Alg. 1. For a Gaussian distribution g, all obstacles are
queried to calculate the negation of the SDF which is a
random variable following a Gaussian distribution (Line 27-
28). Subsequently, the CVaR is calculated and the function
INFREE returns False if (12) is not satisfied for any obstacle
O (Line 29-30). Otherwise, the function INFREE returns
True (Line 33). The function COLLISIONFREE (Line 6)
checks whether the transition §(¢) between two Gaussian dis-
tributions ¢ and ¢’ is collision-free with respect to obstacles

O, ie., Vg e §(t),t € [0,1], INFREE(g, O) returns True. In
practical implementation, the collision checking for §(¢) can
be achieved approximately by performing INFREE assess-
ments for a collection of Gaussian distributions interpolated
between g and ¢’ based on Eq. (3) and Eq. (4).

IV. SWARMPRM APPROACH FOR HIERARCHICAL
MOTION PLANNING

The SwarmPRM approach (Alg. 2) consists of following
two planning stages. At the macroscopic stage (Line 1-
9), SwarmPRM leverages the risk-aware Gaussian roadmap
constructed in Sec. III to address the optimization problem
(1) within the GMM space and generate GMM trajectory
x(t). Subsequently, the microscopic control for each robot
is computed to track the GMM trajectory (Line 10). The
process of SwarmPRM at the macroscopic planning stage is
shown in Fig. 2.

A. Macroscopic Motion Planning in GMM Space

Consider the macroscopic planning problem in GMM
space GM = {Q|Q_Zk L wigi,Vgi € G,k eN, Zk LW =
1} Denote the initial and target swarm state as o7, =
Z U Wh g, o1y = > 21 wa gT , respectively, where QT
comprises Ny Gaussian components I'z, = {gj, -, gT 11
with weights wr, = [wh, , -+ ,wi'], and or, consists of N
Gaussian components I'r, = {g;f, e gT2} with weights
wr, = [w%f,~-- wa] Building upon the discussions in
Sec. III, we assume the optimal transport between o7, and
or, can be achieved through a set of Gaussian trajecto-
ries =* {&;@),t e [To,Tyl,i € {1,---,N1},j €
{1,---, Na}}, each £F,(¢) originating from the ith Gaussian
component of o7, and ultimately reaching the jth Gaussian
component of or,. To satisfy the normalization property
of the GMM, each Gaussian trajectory &f;(t) is assigned
a weight A\, satisfying 3, ; A\f; = 1, so that the optimal
GMM trajectory can be derived as x(t) = X, ; AF 65, (0),



and the optimal transport cost can be computed as the sum
of the transport cost along each Gaussian trajectory 5: j(t),
which is determined by the Wasserstein metric and weighted
by Af .

The SwarmPRM approach is presented in Alg. 2. The
function ROADMAPCONSTRUCTION constructs a Gaussian
roadmap G = (V, E) including n nodes ¢y, - ,g, and
the set of Gaussian components of the initial and target
GMMs (Line 1-2), as detailed in Sec. III. Through employing
graph search on the Gaussian roadmap, the trajectory él i(®)
with the lowest transport cost E(g%o,ngf) between each

pair of Gaussian distributions (giTO, g%f) can be calculated
(Line 3-8), which is an approximation to the computationally
intractable optimal Gaussian trajectory &' j (t). Therefore, we
can provide an approximate solution to the optimization
problem (1) in GMM space through computing the optimal
GMM trajectory on the Gaussian roadmap. Detailedly, we
compute the optimal weights ); ; allocated to individual
Gaussian trajectories éu(t) to obtain the GMM trajectory
i )\i,jéi, ;(t) with minimal cost, which can be modeled as
a linear programming (LP) problem (Line 9)

N; Ny ‘ )

min Y7 > L9k, 9F,) (13)
i=1j=1
Ny ]

st Y Ay =wh, Ve (L, Nab, (13a)
i=1
No .
3 g =wh Vie {1, N}, (13b)
j=1

where A = {X; j,ie{l,---,N1},j€{1,---, Na}} denotes
the transport policy.

Remark 1. The Gaussian trajectories planned by Swarm-
PRM may overlap during certain time intervals, i.e., there
may existA Tl,T27£7;11j1,€7;27j27T0 < Ty < 1Ty < Tf,Vt €
[T, T5), &5, (t) = &i,.5, (t). The number of Gaussian com-
ponents of the GMM trajectory x(t) is thus time-varying.

B. Microscopic Motion Planning

Upon determining the optimal evolution of the macro-
scopic state, represented by the time-varying GMM, each
robot can utilize it to compute the collision-free trajectory
from the initial position to the target area (Line 10). A com-
putationally efficient artificial potential field (APF) approach
is adopted to compute the microscopic control inputs for all
N robots,

a(wl Uatt + w2Urep)

u; = — 1=1.---
an ) 9

N, (14)
where Ugyt, Urep represent the attractive and repulsive poten-
tials, respectively, and w;, wy are pre-defined weights repre-
senting the desired tradeoff between attractive and repulsive
objectives. The detailed implementation of the APF approach
can be found in [5].

Algorithm 2: SwarmPRM Algorithm

Input: o7, : the initial GMM, or, : the target GMM, Q :
the initial positions of swarm robots, O : the
environmental obstacles, n : the number of nodes in
the Gaussian roadmap, r : the connection radius

Output: 7 : the trajectories of swarm robots

1: Obtain the set of Gaussian components I'z,, FTf of
initial and target GMMs o7, and or,

2: G = ROADMAPCONSTRUCTION(n, 7, O, ', U I'ry)

3: for all g7, € I';, do

4. for all g%f eIz, do

5: Compute the shortest path 5” (t) from g"T0 to g]Tf
on graph GG using graph search _

6: Compute the transport cost £(g7, , g%f)

7. end for

8: end for

9: Obtain A by solving the LP in (13)

10: Compute 7 from Q, {¢; ;(t)}, and A by solving (14)

V. SIMULATION RESULTS

This section evaluates the effectiveness of the proposed
SwarmPRM approach via several simulations. First, two
challenging cluttered environments are used to benchmark
SwarmPRM against three representative approaches both
qualitatively and quantitatively. Subsequently, the effective-
ness of the risk measure CVaR on collision avoidance is
assessed.

A. Simulation Setup

In each simulation scenario, the swarm is tasked with nav-
igating from a given initial distribution o7, = 25\21 w}o gf;po
to a target distribution o7, = Z;le w%f g%f, while avoiding
collisions with obstacles in W = [0, W] x [0, H], where
W = 200m, H = 160m, Ny = 4, Ny = 3, wy, = §

1
2 _ 3,3 _ 3 .4 _ 3 .1 _ 1 .2 _ 3
wg:o -8 Wr, = 160 W, T 160 W1y T 1 YT, T %o
wp, = §- All Gaussian components of o7, and or, share the

same covariance matrix, 10015, where I5 denotes the second-
order identity matrix. The means of gf, ,i € {1,2,3,4} and
g]ff,j e {1,2,3} are [25,20], [25,40], [25,120], [25, 140],
and [175,40], [175,60], [175,120], respectively. Each robot
is of circular shape with a radius of 0.2m and is characterized
by single-integrator dynamics

:Bl(t) :ui(t)vwi(TO) :qiv\Vie{lv"' 7N}? (15)

where x; = [z;,7;]7 denotes the robot position, and the
control input wu; is a vector of linear velocities in the x- and
y-directions. When constructing the Gaussian roadmap G,
we set the number of samples n = 500, and the connection
radius » = 20. The simulations are implemented using
MATLAB code, and executed on a laptop with Intel Core
17-1065G7 CPU@1.30GHz and 16GB RAM. In practical
implementation, we integrate the uniform sampler with a
Gaussian sampler [21] to achieve a better coverage of the
difficult area in the collision-free space. Furthermore, to
avoid excessively high local densities in the swarm macro-
scopic state which adds difficulty to microscopic planning,



TABLE I: Simulation Results in Environment I

TABLE II: Simulation Results in Environment II
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Fig. 3: Trajectory comparison in environment I and II. The
trajectories of the swarm robotic system comprised of N = 500
robots obtained by (a) SwarmPRM, (b) Formation control, and (c)
ADOC, for the same set of initial positions in each environment.
The initial and final positions are represented by colored circles on
the left and right sides of each subfigure, respectively, while the
obstacles are depicted in black color.

we impose an upper limit on the probability density of the
GMM x(t) solved by the LP problem (13), which can be
formulated as a minimum-cost flow problem [22].

B. Results and Analyses

Two representative two-dimensional complex environ-
ments are designed to evaluate the performance of our
approach both qualitatively and quantitatively, as well as
three state-of-the-art benchmark methods, including multi-
robot formation control [23], discrete RRT* [9], and adaptive
distributed optimal control [5], denoted as Formation con-
trol, dRRT*, and ADOC, respectively. In each environment,
swarm robotic systems consisting of N = 20,40, 100, 500
robots are required to move from initial configurations to
target areas. The performance can be assessed by the com-
putational time T§,; (min) and the average trajectory length
D (m),

_ 1 X
D:N;

i
L

|z [To+ (T+1)At] —a; (To+TAL) |2, (16)

T

|
0

N SwarmPRM | Formation control dRRT* ADOC N SwarmPRM | Formation control dRRT* ADOC

20 4.9 /250.3 4.8 /296.0 120.0 (36.2) /259.6 (273.6) | 8.0 /271.0 20 4.7 /192.3 2.8 /271.2 120.0 (35.5) / 180.3 (270.4) | 10.6 / 205.8

40 | 5.2 /253.4 8.0 / 309.2 120.0 (102.2) / 466.0 (466.0) | 8.2 / 271.1 40 | 5.0 /192.7 5.6 /2728 120.0 (109.4) / 399.4 (399.4) | 10.9 / 206.0

100 | 5.8 / 254.0 18.7 / 320.3 -/ - 8.8 /272.8 100 | 5.5 /193.1 14.7 / 280.4 -/ - 11.5 / 206.8

500 | 11.6 / 255.7 81.5 / 327.9 -/ - 15.8 / 274.1 500 | 11.0 / 193.5 68.8 / 280.7 -/ - 19.6 / 208.5
r—To

where k = L= A7+ The quantitative results are shown in
Tab. 1 and Tab. II, with the values before and after the
slash representing 7T, and D, respectively. We set the
computational time limit of dRRT* to be 2 hours, and record
T..; and D when dRRT* stops. Furthermore, we document
the computational time required to find the first solution and
its coresponding D in the bracket.

1) Environment I: We consider an environment containing
3 nonconvex obstacles, which is presented in the left column
of Fig. 3. All approaches successfully plan a collision-free
trajectory for each robot with respect to all obstacles and
other robots. As shown in Tab. I, our SwarmPRM approach
surpasses other methods in terms of T, and D in almost
all scenarios. In comparison with ADOC, which plans the
time-varying GMM using a predetermined set of collocation
Gaussian components, our approach demonstrates superior
performance in both metrics, showcasing the efficacy of
the sampling-based method on generating GMM trajectories
with lower costs within shorter computational time. Re-
garding Formation control, the global planner necessitates
adhering to the formation for the entirety of the swarm,
leading to an increased average trajectory length compared to
other methods. Moreover, the local motion planning entails
solving distributed nonlinear optimizations for each robot
at high frequency to avoid collisions, resulting in a rapid
increase in the overall computational time T,; as the swarm
size grows, which exceeds that of SwarmPRM in scenarios
where N = 40,100,500. In comparison with dRRT*, our
approach computes solutions with shorter 7, and lower
D in all cases thanks to the hierarchical planning strategy.
The dRRT* faces a substantial computational burden and
can only find solutions for swarm robotic systems consisting
of up to around 40 robots in environment I within the
allotted two-hour computational time, which is insufficient
for finding a solution with D better than our approach. Fur-
thermore, we notice that the computational time required by
SwarmPRM to plan the GMM trajectory at the macroscopic
stage is independent of the swarm size N, showcasing good
scalability of our approach to large-scale swarm robots.

The left column of Fig. 3 shows the trajectories of the
swarm robotic system comprising 500 robots planned by
SwarmPRM, Formation control, and ADOC, respectively.
The SwarmPRM and ADOC allow splitting and merging
of the swarm’s PDF and plan trajectories with lower D in
comparison with the Formation control which requires the
maintenance of a formation for all robots in the swarm.

2) Environment II: In environment II, 10 obstacles are
randomly distributed. The results, as shown in Tab. II and the
right column of Fig. 3, show similar trends to those discussed
in Sec. V-B.1. The qualitative result shows that the macro-



100 100 B

60

20 20

0 2 4 6 8 1012 14 16 18 20 22 24 “() 2
Minimal distance to obstacles (m)
Fig. 4: (a) and (b) illustrate the minimal distance from each robot to
the set of obstacles along the overall trajectory, with risk tolerance
level a = 0.3 and 0.1, respectively.
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scopic trajectory planned by SwarmPRM can cross "narrow

passages”, leading to shorter average trajectory length D
compared to ADOC, Formation control, and dRRT*.

C. Evaluation of the Risk Measure CVaR

To demonstrate the effectiveness and risk awareness of
the risk measure CVaR, we set the swarm size to be 500,
and the risk tolerance level o to be 0.3 and 0.1. During the
construction of the Gaussian roadmap, the functions INFREE
and COLLISIONFREE ensure the conditional expectation of
the SDF within the 30% and 10% worst-case quantiles
to fall in the safe region, respectively. We calculate the
minimal distance from each robot to the set of obstacles
along the entire trajectory under different values of the
risk tolerance level «, and visualize the number of robots
falling into different distance intervals. As Fig. 4 shows, a
smaller risk tolerance level « leads to a higher percentage of
robots positioned further away from the obstacles, affirming
the effectiveness and risk awareness of employing CVaR
for collision avoidance. Furthermore, we can regulate the
proximity of the robot swarm to obstacles by adjusting the
risk tolerance level a.

VI. CONCLUSION

We develop the SwarmPRM motion planning approach,
offering a new perspective on developing sampling-based
motion planning methods for large-scale swarm robotic
systems. We propose to construct a risk-aware Gaussian
roadmap, where each node represents a Gaussian distribu-
tion, and the distance and geodesic path between nodes
are defined based on the Wasserstein metric. Furthermore,
we incorporate CVaR for collision checking, enabling the
generation of the risk-aware Gaussian roadmap. We formu-
late a linear programming problem to calculate the optimal
GMM trajectory on the roadmap. Simulation results show
that SwarmPRM significantly outperforms other state-of-the-
art benchmark approaches in computational efficiency and
average trajectory length. Moreover, the risk awareness and
scalability of our approach are also validated. Future work
includes extension to three-dimensional environments and
implementation of SwarmPRM on real robotic platforms.
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